Start: A = (4, -3) B = (5, -1) C = (-1, -2)	$\overrightarrow{AB} =$	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	magnitude of \overrightarrow{AB} =
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\overrightarrow{BC} =$	$\sqrt{5}$	magnitude of \overrightarrow{AC} =
$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	$\overrightarrow{AC} =$	$\sqrt{26}$	magnitude of $\overrightarrow{BC} =$
$\begin{pmatrix} -5 \\ 1 \end{pmatrix}$	$\overrightarrow{CA} =$	$\sqrt{37}$	A vector perpendicular to \overrightarrow{AB} =
$\begin{bmatrix} 5 \\ -1 \end{bmatrix}$	$\overrightarrow{CB} =$	— 2 More resources from www.r	A vector perpendicular to \overrightarrow{BC} = nathssite.com

$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	the cosine of the acute angle between AB and BC =	$\begin{pmatrix} 2 \\ -1.5 \end{pmatrix}$	The position vector of the point which divides the line BC in the ratio 1:2 =
$\frac{8}{\sqrt{185}}$	the cosine of the acute angle between AC and BC =	$\begin{pmatrix} 3 \\ -\frac{4}{3} \end{pmatrix}$	The position vector f the point which divides the line AB in the ratio $2:1 =$
$\frac{29}{\sqrt{962}}$	the cosine of the acute angle between AB and AC =	$\begin{pmatrix} \frac{14}{3} \\ -\frac{5}{3} \end{pmatrix}$	The position vector of the point which divides the line BC in the ratio 2:3 =
$\frac{3}{\sqrt{130}}$	The position vector of the $mid - point$ of the line $AB =$	$\begin{pmatrix} \frac{13}{5} \\ -\frac{7}{5} \end{pmatrix}$	The position vector \mathbf{g} the point which divides the line AC in the ratio $1:2 =$
$\begin{pmatrix} 4.5 \\ -2 \end{pmatrix}$	The position vector of the $mid - point$ of the line $AC =$	More resourc $\frac{7}{3}$ from www.r	The position vector of the point which divides the line CA in the ratio 1:3 = nathssite.com